Lie Theory and Separation of Variables for the Equation \[ iU_t + \Delta _2 U - \left( {\frac{\alpha }{{x_1^2 }} + \frac{\beta }{{x_2^2 }}} \right)U = 0\]
- 1 April 1976
- journal article
- Published by Society for Industrial & Applied Mathematics (SIAM) in SIAM Journal on Mathematical Analysis
- Vol. 7 (2) , 230-263
- https://doi.org/10.1137/0507019
Abstract
No abstract availableKeywords
This publication has 15 references indexed in Scilit:
- On the Separation of Variables for the Laplace Equation $\Delta \psi + K^2 \psi = 0$ in Two- and Three-Dimensional Minkowski SpaceSIAM Journal on Mathematical Analysis, 1975
- Lie theory and separation of variables. 6. The equation i U t + Δ2U = 0Journal of Mathematical Physics, 1975
- Lie theory and separation of variables. 7. The harmonic oscillator in elliptic coordinates and Ince polynomialsJournal of Mathematical Physics, 1975
- Lie theory and separation of variables. 5. The equations iUt + Uxx = 0 and iUt + Uxx −c/x2 U = 0Journal of Mathematical Physics, 1974
- Lie theory and separation of variables. 4. The groups SO (2,1) and SO (3)Journal of Mathematical Physics, 1974
- Lie theory and separation of variables. 3. The equation ftt−fss =γ2fJournal of Mathematical Physics, 1974
- The Addition Formula for Jacobi Polynomials and Spherical HarmonicsSIAM Journal on Applied Mathematics, 1973
- Crossing Symmetric Expansions of Physical Scattering Amplitudes; The O(2, 1) Group and Lamé FunctionsJournal of Mathematical Physics, 1971
- Mathieusche Funktionen und SphäroidfunktionenPublished by Springer Nature ,1954
- Die Konfluente Hypergeometrische FunktionPublished by Springer Nature ,1953