Mitochondrial Introns as Mobile Genetic Elements: the Role of Intron-Encoded Proteins
- 1 January 1986
- book chapter
- Published by Springer Nature
- Vol. 40, 5-27
- https://doi.org/10.1007/978-1-4684-5251-8_2
Abstract
Introns of organelle genes share distinctive RNA secondary structures that allow their classification into two known families. These structures are believed to play an essential role in splicing, and members of both structural classes have recently been shown to perform self-splicing reactions in vitro. In lower eukaryotes, many structured introns also contain long internal open reading frames (ORFs), which are able to code for hydrophilic proteins. Several properties of self-splicing structured introns suggest that they resemble mobile genetic elements, even though no actual transposition event involving these introns has yet been found. We report here on the characterization of two intron-encoded proteins that strongly support this attractive idea. First, we show that the class I intron of the 21S ribo-somal RNA (rRNA) gene of Saccharomyces cerevisiae omega strains (r1 intron) encodes a specific transposase. This protein has been partially purified from Escherichia coli cells that overexpress it from an artificial universal code equivalent to the rl intronic ORF. The omega transposase shows a double-strand endonuclease activity in vitro. This activity creates a 4-bp staggered cut with 3′ OH overhangs within a specific sequence of the 21S rRNA gene of omega strains. It is precisely within this sequence that the rl intron inserts by a duplicative transposition. Second, we report on the synthesis, in E. coli, of a putative reverse transcriptase encoded by the class II intron of the cytochrome b gene of Schizosaccharomyces pombe. This synthesis was obtained from E. coli expression vectors, using the class II intronic ORF linked to an artificial initiator sequence. As further support of the idea that structured introns are mobile, we show, from a systematic screening of introns in various yeast species, that the r1 intron has transposed into the ATPase subunit 9 gene of Kluyveromyces fragilis. Structural features observed at the new intron homing site may be relevant to the transposition event.Keywords
This publication has 35 references indexed in Scilit:
- Universal code equivalent of a yeast mitochondrial intron reading frame is expressed into E. coli as a specific double strand endonucleaseCell, 1986
- The mitochondrial URF1 gene in Neurospora crassa has an intron that contains a novel type of URFJournal of Molecular Biology, 1985
- The mitochondrial genome of the fission yeast Schizosaccharomyces pombeJournal of Molecular Biology, 1985
- Nonreciprocal exchange between alleles of the yeast mitochondrial 21S rRNA gene: Kinetics and the involvement of a double-strand breakCell, 1985
- Splicing of large ribosomal precursor RNA and processing of intron RNA in yeast mitochondriaCell, 1984
- RNA splicing in neurospora mitochondria: Self-splicing of a mitochondrial intron in vitroCell, 1984
- An mRNA maturase is encoded by the first intron of the mitochondrial gene for the subunit I of cytochrome oxidase in S. cerevisiaeCell, 1983
- Two intron sequences in yeast mitochondrial COX1 gene: Homology among URF-containing introns and strain-dependent variation in flanking exonsCell, 1983
- Sequence of the intron and flanking exons of the mitochondrial 21S rRNA gene of yeast strains having different alleles at the ω and rib-1 lociCell, 1980
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970