Rotational invariance and order-parameter stiffness in frustrated quantum spin systems

Abstract
We compute, within the Schwinger-boson scheme, the Gaussian-fluctuation corrections to the order-parameter stiffness of two frustrated quantum spin systems: the triangular-lattice Heisenberg antiferromagnet and the J1J2 model on the square lattice. For the triangular-lattice Heisenberg antiferromagnet we found that the corrections weaken the stiffness, but the ground state of the system remains ordered in the classical 120° spiral pattern. In the case of the J1J2 model, with increasing frustration the stiffness is reduced until it vanishes, leaving a small window 0.53η0.64 where the system has no long-range magnetic order. In addition, we discuss several methodological questions related to the Schwinger-boson approach. In particular, we show that the consideration of finite clusters which require twisted boundary conditions to fit the infinite-lattice magnetic order avoids the use of ad hoc factors to correct the Schwinger-boson predictions.