• 1 September 1991
    • journal article
    • Vol. 49  (3) , 635-45
Abstract
Infantile-onset glycogen storage disease type II, or Pompe disease, results from a genetic deficiency of the lysosomal enzyme acid alpha glucosidase (GAA). Sequencing of the cDNA from a cell line (GM 244) derived from a patient with Pompe disease demonstrated a T953-to-C transition that predicted a methionine-to-threonine substitution at codon 318. The basepair substitution resulted in loss of restriction-endonuclease sites for NcoI and StyI. Analysis of genomic DNA revealed both a normal and an abnormal NcoI fragment, indicating that the patient was a genetic compound. NcoI and StyI digestion of cDNA, amplified by PCR from reverse-transcribed RNA, demonstrated that greater than 95% of the GAA mRNA in GM 244 was derived from the allele carrying the missense mutation. The missense mutation was uncommon, since it was not detected in 37 additional GAA-deficient chromosomes, as determined by digestion of genomic DNA with NcoI and hybridization. The amino acid substitution predicts a new potential site for N-linked glycosylation, as well as major changes in secondary structure of the protein. We could confirm that the mutation was responsible for the enzyme deficiency by demonstrating that a hybrid minigene containing the mutation did not express GAA enzyme activity after transient gene expression. We have therefore now provided the first identification of a single-basepair missense mutation in a patient with Pompe disease and furthermore have demonstrated that the patient is a genetic compound with the second allele barely expressing mRNA.