Abstract
The purpose of this paper is to find out what can be learned about valuation rings, and more generally Prufer rings, from a study of their injective modules. The concept of an almost maximal valuation ring can be reformulated as a valuation ring such that the images of its quotient field are injective. The integral domains with this latter property are found to be the Prufer rings with a (possibly) weakened form of linear precompactness for their quotient fields.

This publication has 5 references indexed in Scilit: