Abstract
A new and conceptually simple derivation is presented of the multipole expansion of an electromagnetic field that is generated by a localized, monochromatic charge‐current distribution. The derivation is obtained with the help of a generalized plane wave representation (known also as the angular spectrum representation) of the field. This representation contains both ordinary plane waves, and plane waves that decay exponentially in amplitude as the wave is propagated. The analysis reveals an intimate relationship between the generalized plane wave representation and the multipole expansion of the field and leads to a number of new results. In particular, new expressions are obtained for the electric and magnetic multipole moments in terms of certain components of the spatial Fourier transform of the transverse part of the current distribution. It is shown further that the electromagnetic field at all points outside a sphere that contains the charge‐current distribution is completely specified by the radiation pattern (i.e., by the field in the far zone). Explicit formulas are obtained for all the multipole moments in terms of the radiation pattern.

This publication has 19 references indexed in Scilit: