Sphere packings with three contacts per sphere and the problem of the least dense sphere packing
- 1 June 1995
- journal article
- research article
- Published by Walter de Gruyter GmbH in Zeitschrift für Kristallographie - Crystalline Materials
- Vol. 210 (6) , 407-414
- https://doi.org/10.1524/zkri.1995.210.6.407
Abstract
Two procedures to derive all types of sphere packings with three contacts per sphere are described. 52 such types have been found. They are characterized by their shortest meshs and related to Wells' three-connected nets, if possible. It is proved that there exists no sphere packing with contact number three and a density lower than 5.5%, i.e. the density of the Heesch-Laves packing.Keywords
This publication has 12 references indexed in Scilit:
- The status of the kepler conjectureThe Mathematical Intelligencer, 1994
- ON THE SPHERE PACKING PROBLEM AND THE PROOF OF KEPLER'S CONJECTUREInternational Journal of Mathematics, 1993
- Tetragonal sphere packingsZeitschrift für Kristallographie - Crystalline Materials, 1993
- Tetragonal sphere packingsZeitschrift für Kristallographie, 1991
- The geometrical characteristics of theα-ThSi2structure type and of its parameter fieldZeitschrift für Kristallographie, 1985
- A note on the structure of TiMnSi2 and the tetrahedrally close-packed 'pentagon–sigma' structureActa crystallographica Section B, Structural science, crystal engineering and materials, 1983
- Über Kugellagerungen, Wirkungsbereichsteilungen und Koordinationszahlen von Punktkonfigurationen mit trigonaler Symmetrie R[unk]mZeitschrift für Kristallographie - Crystalline Materials, 1983
- Existenzbedingungen homogener Kugelpackungen zu kubischen Gitterkomplexen mit drei FreiheitsgradenZeitschrift für Kristallographie, 1974
- Existenzbedingungen homogener Kugelpackungen zu kubischen Gitterkomplexen mit weniger als drei Freiheitsgraden *Zeitschrift für Kristallographie, 1973
- Existenzbedingungen homogener Kugelpackungen in Raumgruppen tetragonaler Symmetrie*Zeitschrift für Kristallographie, 1971