Fluorine Substituted Conjugated Polymer of Medium Band Gap Yields 7% Efficiency in Polymer−Fullerene Solar Cells

Abstract
Recent research advances on conjugated polymers for photovoltaic devices have focused on creating low band gap materials, but a suitable band gap is only one of many performance criteria required for a successful conjugated polymer. This work focuses on the design of two medium band gap (∼2.0 eV) copolymers for use in photovoltaic cells which are designed to possess a high hole mobility and low highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels. The resulting fluorinated polymer PBnDT−FTAZ exhibits efficiencies above 7% when blended with [6,6]-phenyl C61-butyric acid methyl ester in a typical bulk heterojunction, and efficiencies above 6% are still maintained at an active layer thicknesses of 1 μm. PBnDT−FTAZ outperforms poly(3-hexylthiophene), the current medium band gap polymer of choice, and thus is a viable candidate for use in highly efficient tandem cells. PBnDT−FTAZ also highlights other performance criteria which contribute to high photovoltaic efficiency, besides a low band gap.