Abstract
Global dust storms on Mars occur in some years but not in others. If the four Mars years of Viking data are representative, some distinguishing characteristics can be inferred. In years with global dust storms, dust is raised in the southern hemisphere and spread over much of the planet by an intensified Hadley circulation. In years without global dust storms, dust is raised in the northern hemisphere by relatively active mid-latitude storm systems but does not spread globally. In both cases the dusty season is winter in the north. Assuming that the cross-equatorial Hadley circulation plays a key role in the onset of global dust storms, it is shown from numerical simulations that a northen hemisphere dust haze weakens its intensity and, hence, its contribution to the surface stress in the southern hemisphere. This, in turn, reduces the possibility of global dust storm development. The interannual variability is therefore the result either of a competition between circulations in opposite hemispheres, in which case the variability has a random component, or it is the result of the cycling of dust between hemispheres, in which case the variability is related to the characteristics of global dust storms themselves.