Abstract
The experimental behaviour of plasma instabilities in high-current discharges is found to be in good agreement with the predictions of linear and nonlinear magnetohydrodynamic theory. Observations show that on time-scales comparable with the Alfven transit time there are rapidly growing ideal magnetohydrodynamic perturbations whereas experiments on longer time-scales show the growth and saturation of resistive instabilities which involve changes in field line topology. The plasmas are observed to exhibit self-control mechanisms which are related to the relaxation of configurations to states of lower magnetic energy. Rapid magnetic field line reconnection phenomena, as in solar flares, are observed.

This publication has 0 references indexed in Scilit: