In situ resistance measurements of strained carbon nanotubes

Abstract
We investigate the response of multiwalled carbon nanotubes to mechanical strain applied with an atomic force microscope probe. We find in some samples, changes in the contact resistance dominate the measured resistance change. In others, strain large enough to fracture the tube can be applied without a significant change in the contact resistance. In this case, we observe that enough force is applied to break the tube without any change in resistance until the tube fails. We have also manipulated the ends of the broken tube back in contact with each other, re-establishing a finite resistance. We observe that, in this broken configuration, the resistance of the sample is tunable to values 15–350 kΩ greater than prior to breaking.
All Related Versions