MaxProp: Routing for Vehicle-Based Disruption-Tolerant Networks

Abstract
Disruption-tolerant networks (DTNs) attempt to route network messages via intermittently connected nodes. Routing in such environments is difficult because peers have little information about the state of the partitioned network and transfer opportunities between peers are of limited duration. In this paper, we propose MaxProp, a protocol for effective routing of DTN messages. MaxProp is based on prioritizing both the schedule of packets transmitted to other peers and the schedule of packets to be dropped. These priorities are based on the path likelihoods to peers according to historical data and also on several complementary mechanisms, including acknowledgments, a head-start for new packets, and lists of previous intermediaries. Our evaluations show that MaxProp performs better than protocols that have access to an oracle that knows the schedule of meetings between peers. Our evaluations are based on 60 days of traces from a real DTN network we have deployed on 30 buses. Our network, called UMassDieselNet, serves a large geographic area between five colleges. We also evaluate MaxProp on simulated topologies and show it performs well in a wide variety of DTN environments.

This publication has 11 references indexed in Scilit: