Low-Temperature Heat Transport in Solid HD

Abstract
The thermal conductivity of solid HD has been measured and compared with theory over the temperature range 4-0.2 K. Since the sample remained frozen over the entire period in which the measurements were made, the H2 and D2 impurities, as well as the other crystal defects, were assumed fixed in the lattice. However, the concentration of the J=1 orthohydrogen (oH2) and paradeuterium impurities in the sample changed through the slow J=1 to J=0 conversion taking place in the solid. The rate of conversion and consequently the J=1 concentration was determined by measuring, as a function of time, the heat of conversion resulting from J=1 to J=0 transitions. Because of the variation in the J=1 concentration, it was possible to separate the thermal resistivity into a (J=1)-dependent part and a part independent of J=1 concentration. The resistivity resulting from phonon scattering by J=1 molecules was compared to existing theory for two-phonon Raman scattering by oH2 molecules in a parahydrogen solid. At the lowest temperatures, the temperature dependence of this resistivity was too large to be accounted for by a two-phonon process. It is suggested that a one-phonon process is responsible for the increase in the resistivity at low temperatures. The results of a calculation are given to demonstrate the palusibility of this argument. Below 1 K, the (J=1)-independent conductivity can be adequately fitted by a T3 temperature dependence. From this dependence it was inferred that the sample was polycrystalline. Above 1 K, the (J=1)-independent conductivity is dominated by the presence of the H2 and D2 isotopic impurities. The techniques used to measure these impurity concentrations are described in detail.