Increased iNOS Activity is Essential for Intestinal Epithelial Tight Junction Dysfunction in Endotoxemic Mice
- 1 March 2004
- journal article
- Published by Wolters Kluwer Health in Shock
- Vol. 21 (3) , 261-270
- https://doi.org/10.1097/01.shk.0000112346.38599.10
Abstract
We tested the hypothesis that increased production of nitric oxide (NO.) associated with lipopolysaccharide (LPS)-induced systemic inflammation leads to functionally significant alterations in the expression and/or targeting of key tight junction (TJ) proteins in ileal and colonic epithelium. Wild-type or inducible NO. synthase (iNOS) knockout male C57B1/6J mice were injected intraperitoneally with 2 mg/kg Escherichia coli O111:B4 LPS. iNOS was inhibited using intraperitoneal L-N(6)-(1-iminoethyl)lysine (L-NIL; 5 mg/kg). Immunoblotting of total protein and NP-40 insoluble proteins revealed decreased expression and decreased TJ localization, respectively, of the TJ proteins, zonula occludens (ZO)-1, ZO-2, ZO-3, and/or occludin in ileal mucosa and colonic mucosa (total protein only) after injection of C57B1/6J mice with LPS. Immunohistochemistry showed deranged distribution of ZO-1 and occludin in both tissues from endotoxemic mice. Endotoxemia was associated with evidence of gut epithelial barrier dysfunction evidenced by increased ileal mucosal permeability to fluorescein isothiocyanate-dextran (Mr=4 kDa) and increased bacterial translocation to mesenteric lymph nodes. Pharmacologic inhibition of iNOS activity using L-NIL or genetic ablation of the iNOS gene ameliorated LPS-induced changes in TJ protein expression and gut mucosal barrier function. These results support the view that at least one mechanism contributing to the pathogenesis of gastrointestinal epithelial dysfunction secondary to systemic inflammation is increased iNOS-dependent NO. production leading to altered expression and localization of key TJ proteins.Keywords
This publication has 30 references indexed in Scilit:
- Increased iNOS activity is essential for pulmonary epithelial tight junction dysfunction in endotoxemic miceAmerican Journal of Physiology-Lung Cellular and Molecular Physiology, 2004
- Increased iNOS activity is essential for hepatic epithelial tight junction dysfunction in endotoxemic miceAmerican Journal of Physiology-Gastrointestinal and Liver Physiology, 2004
- Proinflammatory Cytokines Cause No??-Dependent and -Independent Changes in Expression and Localization of Tight Junction Proteins in Intestinal Epithelial CellsShock, 2003
- Ethyl pyruvate modulates inflammatory gene expression in mice subjected to hemorrhagic shockAmerican Journal of Physiology-Gastrointestinal and Liver Physiology, 2002
- Understanding tight junction clinical physiology at the molecular levelJournal of Clinical Investigation, 1999
- LISOFYLLINE AMELIORATES INTESTINAL MUCOSAL BARRIER DYSFUNCTION CAUSED BY ISCHEMIA AND ISCHEMIA/REPERFUSIONShock, 1999
- Relationship of necrosis to organ failure in severe acute pancreatitisGastroenterology, 1997
- Possible Involvement of Phosphorylation of Occludin in Tight Junction FormationThe Journal of cell biology, 1997
- Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthaseCell, 1995
- L-N6-(1-Iminoethyl)lysine: A Selective Inhibitor of Inducible Nitric Oxide SynthaseJournal of Medicinal Chemistry, 1994