Conserved network motifs allow protein–protein interaction prediction
Open Access
- 9 July 2004
- journal article
- research article
- Published by Oxford University Press (OUP) in Bioinformatics
- Vol. 20 (18) , 3346-3352
- https://doi.org/10.1093/bioinformatics/bth402
Abstract
Motivation: High-throughput protein interaction detection methods are strongly affected by false positive and false negative results. Focused experiments are needed to complement the large-scale methods by validating previously detected interactions but it is often difficult to decide which proteins to probe as interaction partners. Developing reliable computational methods assisting this decision process is a pressing need in bioinformatics. Results: We show that we can use the conserved properties of the protein network to identify and validate interaction candidates. We apply a number of machine learning algorithms to the protein connectivity information and achieve a surprisingly good overall performance in predicting interacting proteins. Using a ‘leave-one-out’ approach we find average success rates between 20 and 40% for predicting the correct interaction partner of a protein. We demonstrate that the success of these methods is based on the presence of conserved interaction motifs within the network. Availability: A reference implementation and a table with candidate interacting partners for each yeast protein are available at http://www.protsuggest.org.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: