Human chorionic gonadotropin (hCG) self-associates to form higher molecular weight species in the presence of the fluorescence probe 8-anilino-1-naphthalenesulfonate (ANS). Sedimentation equilibrium and fluorescence titration data have been analyzed in terms of a monomer-dimer-tetramer model in which the various oligomers have different affinities and/or capacities for the ligand. The results indicate that the ligand affinities are in the order tetramer greater than dimer greater than monomer whereas the numbers of ligand binding sites per mole of hCH are in the reverse order. Consequently, addition of ANS first shifts the equilibrium from monomer to tetramer and gives rise to positive cooperativity in the titration curves. At sufficiently high ANS concentration (approximately 0.5 mM), the equilibrium shifts back to the dimer because of its greater binding capacity. This is manifested by a second phase in the titration curve and a decrease in the polarization of ANS fluorescence. The results are discussed in terms of the general problem of ligand controlled protein association and are contrasted to results reported to the previous paper for the homolgous protein, human luteinizing hormone.