WINGS: a WIde-field Nearby Galaxy-cluster Survey

Abstract
This is the first paper of a series that will present data and scientific results from the WINGS project, a wide-field, multiwavelength imaging and spectroscopic survey of galaxies in 77 nearby clusters. The sample was extracted from the ROSAT catalogs of X-Ray emitting clusters, with constraints on the redshift () and distance from the galactic plane ( deg). The global goal of the WINGS project is the systematic study of the local cosmic variance of the cluster population and of the properties of cluster galaxies as a function of cluster properties and local environment. This data collection will allow the definition of a local, “zero-point” reference against which to gauge the cosmic evolution when compared to more distant clusters. The core of the project consists of wide-field optical imaging of the selected clusters in the B and V bands. We have also completed a multi-fiber, medium-resolution spectroscopic survey for 51 of the clusters in the master sample. The imaging and spectroscopy data were collected using, respectively, the WFC@INT and WYFFOS@WHT in the northern hemisphere, and the WFI@MPG and 2dF@AAT in the southern hemisphere. In addition, a NIR (J, K) survey of 50 clusters and an H survey of some 10 clusters are presently ongoing with the WFCAM@UKIRT and WFC@INT, respectively, while a very-wide-field optical survey has also been programmed with OmegaCam@VST. In this paper we briefly outline the global objectives and the main characteristics of the WINGS project. Moreover, the observing strategy and the data reduction of the optical imaging survey (WINGS-OPT) are presented. We have achieved a photometric accuracy of 0.025 mag, reaching completeness to . Field size and resolution (FWHM) span the absolute intervals (1.6–2.7) Mpc and (0.7–1.7) kpc, respectively, depending on the redshift and on the seeing. This allows the planned studies to obtain a valuable description of the local properties of clusters and galaxies in clusters.