On the Convergence of Stochastic Iterative Dynamic Programming Algorithms
- 6 August 1993
- report
- Published by Defense Technical Information Center (DTIC)
Abstract
Recent developments in the area of reinforcement learning have yielded a number of new algorithms for the prediction and control of Markovian environments. These algorithms, including the TD lambda) algorithm of Sutton (1988) and the Q-learning algorithm of Watkins (1989), can be motivated heuristically as approximations to dynamic programming (DP). In this paper we provide a rigorous proof of convergence of these DP-based learning algorithms by relating them to the powerful techniques of stochastic approximation theory via a new convergence theorem. The theorem establishes a general class of convergent algorithms to which both TD(lambda) and Q-learning belong. reinforcement learning, Stochastic approximation, Convergence, Dynamic programming.Keywords
This publication has 0 references indexed in Scilit: