Lung and Chest Wall Mechanics during Differential Ventilation with Selective PEEP

Abstract
Eight patients free from cardio-pulmonary disease and with a mean age of 46 years were studied during general anaesthesia in the lateral position. Measurements of hemithoracic mechanics were made during four different modes of ventilation: 1. Coventional ventilation (free distribution of ventilation) with no positive end-expiratory pressure (PEEP) (CV), 2. differential ventilation (50% of ventilation to each lung) with no PEEP (DV:0), and 3 and 4, DV with selective PEEP of 0.8 and 1.6 kPa, respectively, to the dependent lung only (DV:8, DV:16). During CV, 60% of ventilation was distributed to the non-dependent lung. Non-dependent hemithoracic compliance was 64% greater and inspiratory resistance 39% lower than those of the dependent hemithorax. No significant differences between the two hemithoraces were noted during DV:O, but on application of selective PEEP the compliance of the dependent hemithorax increased and its resistance decreased. With DV:16, the compliances of the two hemithoraces were essentially equal, as were their resistances. Selective PEEP caused a larger volume increase in the dependent lung than general PEEP. Selective PEEP reduced the volume of the non-dependent lung but only by 1/3 of the simulataneous increase in that of the dependent lung. Oesophageal pressure increased only slightly on selective inflation of the dependent lung, and remained negative within the 21 volume range studied. It is suggested that the altered mechanics of the dependent lung during selective PEEP result in a more even distribution of the inspired gas within that lung.