In Situ Electrochemical Oxygen Generation with an Immunoisolation Device

Abstract
The viability and function of transplanted tissue encapsulated in immunobarrier devices is subject to oxygen transport limitation. In this study, we have designed and used an in situ electrochemical oxygen generator which decomposes water electrolyticaly to provide oxygen to the adjacent planer immunobarrier diffusion chamber. The rate of oxygen generation, which increases linearly with electrical current, was accurately controlled. A theoretical model of oxygen diffusion was also developed and was used to calculate the oxygen profiles in some of the experimental systems. In vitro culture experiments were carried out with beta TC3 cells encapsulated in titanium ring devices. The growth and viability of cells with or without in situ oxygen generation was studied. We found that under otherwise similar culturing conditions, the thickness of the cell layer and the viability of cells was the highest in devices cultured in stirred media with oxygen generation, even though the thickness had not reached the theoretically predicted value, and lowest in those unstirred and without oxygen generation.