The Tropical Rainfall Measuring Mission (TRMM) satellite is planned for an operational duration of at least three years, beginning in the mid-1990's. The main scientific goals for it are to determine the distribution and variability of precipitation and latent-heat release on a monthly average over areas of about 105 km2, for use in improving short-term climate models, global circulation models and in understanding the hydrological cycle, particularly as it is affected by tropical oceanic rainfall and its variability. The TRMM satellite's instrumentation will consist of the first quantitative spaceborne weather radar, a multichannel passive microwave radiometer and an AVHRR (Advanced Very High Resolution Radiometer). The satellite's orbit will be low altitude (about 320 km) for high resolution and low inclination (30° to 35°) in order to visit each sampling area in the tropics about twice daily at a different hour of the day. A strong validation effort is planned with several key ground sites to ... Abstract The Tropical Rainfall Measuring Mission (TRMM) satellite is planned for an operational duration of at least three years, beginning in the mid-1990's. The main scientific goals for it are to determine the distribution and variability of precipitation and latent-heat release on a monthly average over areas of about 105 km2, for use in improving short-term climate models, global circulation models and in understanding the hydrological cycle, particularly as it is affected by tropical oceanic rainfall and its variability. The TRMM satellite's instrumentation will consist of the first quantitative spaceborne weather radar, a multichannel passive microwave radiometer and an AVHRR (Advanced Very High Resolution Radiometer). The satellite's orbit will be low altitude (about 320 km) for high resolution and low inclination (30° to 35°) in order to visit each sampling area in the tropics about twice daily at a different hour of the day. A strong validation effort is planned with several key ground sites to ...