Abstract
The conditions under which bound states associated with atoms in the surface of a metal may exist are investigated, using the tight-binding approximation. These states arise as a result of modifications in the parameters of certain atoms. The modifications required to produce (a) bound states associated with all the atoms in the surface (surface states) and (b) bound states associated with particular small groups of atoms are found for the simple cubic lattice. It is also shown that most of the simpler crystal structures do not exhibit surface states without such modifications; in the graphite and diamond lattices, however, surface states exist solely by virtue of the lattice geometry.
Keywords

This publication has 9 references indexed in Scilit: