Hepatic Microsomal Enzyme Induction in Rats Fed Varietal Cauliflower Leaves

Abstract
Leaves from a standard, insect-ssceptible cauliflower variety and an insect-resistant strain were formulated at either 10 or 25% into semipurified diets for male and female weanling rats. After 3 weeks, relative liver weights, microsomal protein, cytochrome P-450, and activities of hepatic microsomal aminopyrine N-demethylase, aniline hydroxylase, p-nitroanisole O-demethylase, and N-methylaniline N-demethylase were determined. Growth, feed intake, and feed efficiency of male rats were not affected by the inclusion of the dried cauliflower leaf in the diet. However, female rats exhibited a depressed feed intake and increased feed efficiency with cauliflower leaf supplemental diets. Relative liver weights increased with increasing percentage of cauliflower leaves in the diet. Hepatic microsomal enzyme response to cauliflower leaf supplementation of the diet was greater in males than in females. Only aniline hydroxylase activity remained unchanged by the test diets. Male rats showed significant increases in N- and O-demethylation with both the 10 and 25% cauliflower diets, and increased values for microsomal protein and cytochrome P-450 at the 25% supplemental level. Female rats did not show significant hepatic microsomal induction from cauliflower leaf consumption at the 10% level. However, cytochrome P-450 and the metabolism of aminopyrine and p-nitroanisole were enhanced by consumption of cauliflower leaves at 25% of their diet. None of the parameters tested in this study evidenced a difference between the two cauliflower cultivars fed to either sex.