Brownian dynamics simulations of molecular recognition in an antibody‐antigen system

Abstract
The crystal structure for an antibody-antigen system, that of the anti-hen egg lysozyme monoclonal antibody HyHEL-5 complexed to lysozyme, is used as the starting point for computer simulations of diffusional encounters between the two proteins. The investigation consists of two parts: first, the linearized Poisson-Boltzmann equation is solved to determine the long-range electrostatic forces between antibody and antigen, and then, the relative motion as influenced by these forces is modeled within Brownian motion theory. The effects of various point mutations on the calculated reaction rate are considered. It is found that charged residues close to the binding site exert the greatest influence in steering the proteins into a configuration favorable for their binding, while more distant mutations are qualitatively described by the Smoluchowski model for the mutual diffusion of two uniformly charged spheres. The antibody residues involved in forming salt links with the lysozyme, Glu-H35 and Glu-H50, appear to be particularly important in electrostatic steering, as neutralization of both of them yields reaction rates that are two to three orders of magnitude below those of wild-type rates. The relative rates obtained from the simulations can be tested through kinetic measurements on mutant protein complexes. Kinetically efficient partners can also be designed and constructed through directed mutagenesis.