Abstract
Background Guidelines have been drawn up to improve the quality of reviews.9 Differences in the quality of reviews, however, do not always explain discordance. Jadad and McQuay4 identified six sets of reviews covering six topics in pain research; despite similar quality scores for reviews in each set, four of the sets contained discordant reviews. Jadad et al8 identified six generic differences between reviews that might lead to discordance: the clinical question asked; the selection and inclusion of studies; data extraction; assessment of study quality; assessment of the ability to combine studies; and statistical methods for data analysis. The case of epidural steroid injection therapy for sciatica is a good illustration of the evolution of reviews. The results of randomised controlled trials of this treatment were inconsistent. Two traditional reviews of these trials appeared—in 198510 and 1986.11 They reached discordant conclusions. A decade later, two systematic reviews—by Watts and Silagy12 and Koes et al13—also reached discordant conclusions. A comparison of these reviews concluded that the difference in their methods—namely, vote counting versus pooling—explained the discordance.14 A further systematic review (of all types of injection therapies, including epidural) was published by Nelemans et al for the Cochrane Collaboration in 1999.15 The three systematic reviews overlap in their nature (qualitative versus quantitative), method for assessing the quality of randomised controlled trials (following that of ter Riet et al16 or Chalmers et al17), and conclusions (table 1). I therefore used them to conduct a general study of the validity of systematic reviews. View this table: In this window In a new window TABLE 1 Summary of systematic reviews assessed for validity