Relaxation process in a regime of quantum chaos

Abstract
We show that the quantum relaxation process in a classically chaotic open dynamical system is characterized by a quantum relaxation time scale t_q. This scale is much shorter than the Heisenberg time and much larger than the Ehrenfest time: t_q ~ g^alpha where g is the conductance of the system and the exponent alpha is close to 1/2. As a result, quantum and classical decay probabilities remain close up to values P ~ exp(-sqrt(g)) similarly to the case of open disordered systems.

This publication has 0 references indexed in Scilit: