Exact Complexity of the Winner Problem for Young Elections

Abstract
In 1977, Young proposed a voting scheme that extends the Condorcet Principle based on the fewest possible number of voters whose removal yields a Condorcet winner. We prove that both the winner and the ranking problem for Young elections is complete for the class of problems solvable in polynomial time by parallel access to NP. Analogous results for Lewis Carroll's 1876 voting scheme were recently established by Hemaspaandra et al. In contrast, we prove that the winner and ranking problems in Fishburn's homogeneous variant of Carroll's voting scheme can be solved efficiently by linear programming.
All Related Versions

This publication has 0 references indexed in Scilit: