Abstract
A vectorXof patient prognostic variables is modeled as a linear diffusion process with time-dependent, non-random, continuous coefficients. The instantaneous force of mortality (hazard function) operating on the patient is assumed to be a time-dependent, continuous quadratic functional of the prognostic vector. Conditional on initial dataX0, the probability of survivingTunits of time is expressed in terms of the solution of a Riccati equation, which can be evaluated in closed form if the coefficients of the process and the hazard are constant. This conditional expectation does not preserve proportional hazards.