Leptin-mediated activation of human platelets: involvement of a leptin receptor and phosphodiesterase 3A-containing cellular signaling complex

Abstract
An elevated circulating level of the adipocyte-derived satiety hormone leptin is an independent risk factor for cardiovascular disease. Because thrombus formation is a major cause of acute coronary events and leptin was shown previously to facilitate ADP-induced platelet aggregation, we chose to define the signaling events involved in leptin-mediated platelet activation. Using pharmacological, biochemical, and cell biological approaches, we show that leptin-induced platelet activation required activation of a signaling cascade that included the long form of the leptin receptor, three kinases [Janus kinase 2 (JAK2), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (PKB/Akt)], the insulin receptor substrate-1 (IRS-1), and the major human platelet cAMP phosphodiesterase phosphodiesterase 3A (PDE3A). Moreover, we identify a role for an intraplatelet LEPR/JAK2/IRS-1/PI3K/PKB/PDE3A molecular complex that allows for the selective leptin-mediated activation of platelets. Our data demonstrate that leptin promotes platelet activation, provides a mechanistic basis for the prothrombotic effect of this hormone, and identifies a potentially novel therapeutic avenue to limit obesity-associated cardiovascular disease.