Abstract
In Hilbert and Ackermann [2] there is a simple proof of the consistency of first order predicate logic by reducing it to propositional logic. Intuitively, the proof is based on interpreting predicate logic in a domain with only one element. Tarski [7] and Gentzen [1] have extended this method to simple type theory by starting with an individual domain consisting of a single element and then interpreting a higher type by the set of truth valued functions on the previous type.I will use the method of Hilbert and Ackermann on Martin-Löf's type theory without universes to show that ¬Eq(A, a, b) cannot be derived without universes for any type A and any objects a and b of type A. In particular, this proves the conjecture in Martin-Löf [5] that Peano's fourth axiom (∀x ϵ N)¬ Eq(N, 0, succ(x)) cannot be proved in type theory without universes. If by consistency we mean that there is no closed term of the empty type, then the construction will also give a consistency proof by finitary methods of Martin-Löf's type theory without universes. So, without universes, the logic obtained by interpreting propositions as types is surprisingly weak. This is in sharp contrast with type theory as a computational system, since, for instance, the proof that every object of a type can be computed to normal form cannot be formalized in first order arithmetic.

This publication has 2 references indexed in Scilit: