A Dynamic Generalization of Zipf's Rank-Size Rule

Abstract
A dynamic deterministic model of urban growth is proposed, which in its most simple form yields Zipf's law for city-size distribution, and in its general form may account for distributions that deviate strongly from Zipf's law. The qualitative consequences of the model are examined, and a corresponding stochastic model is introduced, which permits, in particular, the study of zero-growth situations.

This publication has 6 references indexed in Scilit: