Separation of Convective and Stratiform Precipitation Using Microwave Brightness Temperature
- 1 August 1999
- journal article
- Published by American Meteorological Society in Journal of Applied Meteorology and Climatology
- Vol. 38 (8) , 1195-1213
- https://doi.org/10.1175/1520-0450(1999)038<1195:socasp>2.0.co;2
Abstract
This paper presents a new scheme that classifies convective and stratiform (C/S) precipitation areas over oceans using microwave brightness temperature. In this scheme, data are first screened to eliminate nonraining pixels. For raining pixels, C/S indices are computed from brightness temperatures and their variability for emission (19 and 37 GHz) and scattering (85 GHz). Since lower-resolution satellite data generally contain mixtures of convective and stratiform precipitation, a probability matching method is employed to relate the C/S index to a convective fraction of precipitation area. The scheme has been applied on synthetic data generated from a dynamical cloud model and radiative transfer computations to simulate the frequencies and resolutions of the Tropical Rainfall Measuring Mission (TRMM) Microwave (TMI) Imager as well as the Special Sensor Microwave/Imager (SSM/I). The results from simulated TMI data during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Exper... Abstract This paper presents a new scheme that classifies convective and stratiform (C/S) precipitation areas over oceans using microwave brightness temperature. In this scheme, data are first screened to eliminate nonraining pixels. For raining pixels, C/S indices are computed from brightness temperatures and their variability for emission (19 and 37 GHz) and scattering (85 GHz). Since lower-resolution satellite data generally contain mixtures of convective and stratiform precipitation, a probability matching method is employed to relate the C/S index to a convective fraction of precipitation area. The scheme has been applied on synthetic data generated from a dynamical cloud model and radiative transfer computations to simulate the frequencies and resolutions of the Tropical Rainfall Measuring Mission (TRMM) Microwave (TMI) Imager as well as the Special Sensor Microwave/Imager (SSM/I). The results from simulated TMI data during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Exper...Keywords
This publication has 0 references indexed in Scilit: