Abstract
In Problem 3·39 (B) and (C) of Kirby's collection [10], Giffen and Thurston asked whether, for a closed 3-manifold M, the order of finite subgroups of Diff M is bounded, so that it contains no infinite torsion subgroups unless M admits a circle action. In this paper, we answer this question affirmatively for homotopy geometric manifolds, and then discuss some hyperbolic 3-manifolds with only a few actions as examples showing poor symmetry of 3-manifolds in general.

This publication has 21 references indexed in Scilit: