Abstract
The effect of two known rates of repeated blood loss on rainbow trout Oncorhynchus mykiss swimming performance was measured and blood‐feeding rates of sea lice Lepeophtheirus salmonis were calculated to predict the point at which blood ingestion causes anaemia in infected fish. Known quantities of blood were sampled from rainbow trout over a 5 day period followed by critical swimming performance (Ucrit) testing. A predictive equation was developed using masses of blood‐feeding sea lice and host blood loss calculated for increasing levels of sea lice infection. Blood loss of 8% total blood volume caused a decrease in Ucrit for rainbow trout. Total blood volume losses of 3·2% reduced erythrocyte stores, but did not affect fish swimming performance. The predictive feeding rate model suggests that 15–25% of the tissue consumed by sea lice is blood. This consumption of blood at higher sub‐lethal infection levels (≥0·5 sea lice g−1) may cause anaemia and a further decrease in swimming performance. Anaemia would compound the osmotic balance problems due to infection and potentially precipitate the morbidity seen at lethal sea lice levels (0·75–1·0 lice g−1).