Energy transfers and spectral eddy viscosity in large-eddy simulations of homogeneous isotropic turbulence: Comparison of dynamic Smagorinsky and multiscale models over a range of discretizations

Abstract
Energy transfers within large-eddy simulation (LES) and direct numerical simulation (DNS) grids are studied. The spectral eddy viscosity for conventional dynamic Smagorinsky and variational multiscale LES methods are compared with DNS results. Both models underestimate the DNS results for a very coarse LES, but the dynamic Smagorinsky model is significantly better. For moderately to well-refined LES, the dynamic Smagorinsky model overestimates the spectral eddy viscosity at low wave numbers. The multiscale model is in good agreement with DNS for these cases. The convergence of the multiscale model to the DNS with grid refinement is more rapid than for the dynamic Smagorinsky model.