The positive false discovery rate: a Bayesian interpretation and the q-value
Top Cited Papers
Open Access
- 1 December 2003
- journal article
- Published by Institute of Mathematical Statistics in The Annals of Statistics
- Vol. 31 (6) , 2013-2035
- https://doi.org/10.1214/aos/1074290335
Abstract
Multiple hypothesis testing is concerned with controlling the rate of false positives when testing several hypotheses simultaneously. One multiple hypothesis testing error measure is the false discovery rate (FDR), which is loosely defined to be the expected proportion of false positives among all significant hypotheses. The FDR is especially appropriate for exploratory analyses in which one is interested in finding several significant results among many tests. In this work, we introduce a modified version of the FDR called the "positive false discoveryrate" (pFDR). We discuss the advantages and disadvantages of the pFDR and investigate its statistical properties. When assuming the test statistics follow a mixture distribution, we show that the pFDR can be written as a Bayesian posterior probability and can be connected to classification theory. These properties remain asymptotically true under fairly general conditions, even under certain forms of dependence. Also, a new quantity called the "$q$-value" is introduced and investigated, which is a natural "Bayesian posterior p-value," or rather the pFDR analogue of the p-value.Keywords
This publication has 14 references indexed in Scilit:
- Strong Control, Conservative Point Estimation and Simultaneous Conservative Consistency of False Discovery Rates: A Unified ApproachJournal of the Royal Statistical Society Series B: Statistical Methodology, 2003
- A Direct Approach to False Discovery RatesJournal of the Royal Statistical Society Series B: Statistical Methodology, 2002
- Operating Characteristics and Extensions of the False Discovery Rate ProcedureJournal of the Royal Statistical Society Series B: Statistical Methodology, 2002
- Some Results on False Discovery Rate in Stepwise multiple testing proceduresThe Annals of Statistics, 2002
- Empirical Bayes Analysis of a Microarray ExperimentJournal of the American Statistical Association, 2001
- The control of the false discovery rate in multiple testing under dependencyThe Annals of Statistics, 2001
- On the Adaptive Control of the False Discovery Rate in Multiple Testing With Independent StatisticsJournal of Educational and Behavioral Statistics, 2000
- Exploring the new world of the genome with DNA microarraysNature Genetics, 1999
- Multiple Hypothesis TestingAnnual Review of Psychology, 1995
- An Improved Bonferroni Procedure for Multiple Tests of SignificanceBiometrika, 1986