Separations of Hazardous Organics from Gas and Liquid Feedstreams Using Phosphazene Polymer Membranes

Abstract
In this paper the liquid-liquid and gas separation properties for the separation of hazardous organic feed streams using pervaporation and gas separation methods with poly[bis(phenoxy)phosphazene] based membranes are reported. Liquid transport behavior was determined using pervaporation techniques. The preliminary gas separations were studied using a mixed gas separation method which we have described previously. Using the membrane pervaporation technique, separation factors of 10,000 have been routinely achieved for the separation of methylene chloride from water. Other tests have shown similar results for the removal of hydrocarbon vapors from air. Membranes were prepared using solution casting techniques. Solvent evaporation rates during the casting and subsequent curing processes were controlled to provide a consistent membrane microstructure. These results suggest that polyphosphazene membrane technology could effectively be used in cleaning up air and ground water that has been contaminated with chlorinated hydrocarbons.

This publication has 8 references indexed in Scilit: