Powder compaction, sintering, and rolling of ultra high molecular weight polyethylene and its composites

Abstract
The applicability of powder compaction and sintering techniques to the processing of ultra high molecular weight polyethylene (UHMWPE) powder is demonstrated. With proper processing procedure and type of UHMWPE powder, the mechanical properties obtained are nearly equivalent to those obtained by conventional melt processes. The properties were optimized by selection of a sintering temperature just above the melting point and by close control of particle size and distribution. The processability of UHMWPE is dependent on the morphology of the powder. Only those powders with a fibrous morphology provided good mechanical properties after sintering. The mechanical properties of powder compacts can be improved by several techniques. Liquid sintering with added normal molecular weight polyethylene, with close control of particle size and distribution and amount of the second component, yielded improved properties. Composites of UHMWPE, with short glass and graphite fiber reinforcement, processed by powder compaction and sintering resulted in increased modulus. The properties of these composites depended upon the amount of fibers, fiber length, fiber-matrix bonding, and fiber orientation. Rolling the powder-processed UHMWPE oriented the structure and improved the mechanical properties, although it decreased the mechanical properties of the glass and graphite fiber composites because of debonding between fiber and matrix. The properties of carbon black—UHMWPE mixtures were improved by rolling because of a more uniform distribution of carbon black.

This publication has 21 references indexed in Scilit: