Thermodynamic limit of the density matrix renormalization for the spin-1 Heisenberg chain

Abstract
The density matrix renormalization group (``DMRG'') discovered by White has shown to be a powerful method to understand the properties of many one dimensional quantum systems. In the case where renormalization eventually converges to a fixed point we show that quantum states in the thermodynamic limit with periodic boundary conditions can be simply represented by a special type of product ground state with a natural description of Bloch states of elementary excitations that are spin-1 solitons. We then observe that these states can be rederived through a simple variational ansatz making no reference to a renormalization construction. The method is tested on the spin-1 Heisenberg model.

This publication has 0 references indexed in Scilit: