Mesoscale Modeling of Amphiphilic Fluid Dynamics

Abstract
So-called “vector models”, in which surfactant molecules retain only translational and orientational degrees of freedom, have been used to study the equilibrium properties of amphiphilic fluids for nearly a decade now. We demonstrate that hydrodynamic lattice-gas automata provide an effective means of coupling the Hamiltonian of such vector models to hydrodynamic flow with conserved momentum, thereby providing a self-consistent treatment of the hydrodynamics of amphiphilic fluids. In this “talk”, we describe these hydrodynamic lattice-gas models in two and three dimensions, and present their application to problems of amphiphilic-fluid hydrodynamics, including the dynamics of phase separation and the shear-induced sponge-to-lamellar phase transition.

This publication has 8 references indexed in Scilit: