The cell cycle checkpoint kinase Chk2 is a negative regulator of mitotic catastrophe
- 29 March 2004
- journal article
- research article
- Published by Springer Nature in Oncogene
- Vol. 23 (25) , 4353-4361
- https://doi.org/10.1038/sj.onc.1207573
Abstract
Fusion between nonsynchronized cells leads to the formation of heterokarya which transiently activate Cyclin-dependent kinase 1 (Cdk1)/cyclin B1 and enter the prophase of the cell cycle, where they arrest due to a loss of Cdk1/cyclin B1 activity, activate p53, disorganize centrosomes, and undergo apoptosis. Here, we show that the down regulation of Cdk1/cyclin B is secondary to the activation of the DNA structure checkpoint kinase Chk2. Thus, syncytia generated by the fusion of asynchronous HeLa cells contain elevated levels of active Chk2 but not Chk1. Chk2 bearing the activating phosphorylation on threonine-68 accumulates in BRCA1 nuclear bodies when the cells arrest at the G2/M boundary. Inhibition of Chk2 by transfection of a dominant-negative Chk2 mutant or a chemical inhibitor, debromohymenialdesine, stabilizes centrosomes, maintains high cyclin B1 levels, and allows for a prolonged activation of Cdk1. Under these conditions, multinuclear HeLa syncytia do not arrest at the G2/M boundary and rather enter mitotis and subsequently die during the metaphase of the cell cycle. This mitotic catastrophe is associated with the activation of the pro-apoptotic caspase-3. Inhibition of caspases allows the cells to go beyond the metaphase arrest, indicating that apoptosis is responsible for cell death by mitotic catastrophe. In another, completely different model of mitotic catastrophe, namely 14.3.3σ-deficient HCT116 colon carcinoma cells treated with doxorubicin, Chk2 activation was also found to be deficient as compared to 14.3.3σ-sufficient controls. Inhibition of Chk2 again facilitated the induction of mitotic catastrophe in HCT116 wild-type cells. In conclusion, a conflict in cell cycle progression or DNA damage can lead to mitotic catastrophe, provided that the checkpoint kinase Chk2 is inhibited. Inhibition of Chk2 thus can sensitize proliferating cells to chemotherapy-induced apoptosis.Keywords
This publication has 38 references indexed in Scilit:
- Drosophila Checkpoint Kinase 2 Couples Centrosome Function and Spindle Assembly to Genomic IntegrityCell, 2003
- MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathwaysNature, 2003
- Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastropheCell Death & Differentiation, 2002
- PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2Nature Cell Biology, 2002
- A CHEK2 Genetic Variant Contributing to a Substantial Fraction of Familial Breast CancerAmerican Journal of Human Genetics, 2002
- Checking in on Cds1 (Chk2): A checkpoint kinase and tumor suppressorBioEssays, 2002
- The Radioresistance to Killing of A1–5 Cells Derives from Activation of the Chk1 PathwayPublished by Elsevier ,2001
- Apoptosis and karyogamy in syncytia induced by the HIV-1-envelope glycoprotein complexCell Death & Differentiation, 2000
- A Practical Synthesis of (Z)-DebromohymenialdisineThe Journal of Organic Chemistry, 1999
- Human wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated cdc2 kinaseCell, 1993