Bias detection and correction in RNA-Sequencing data
Open Access
- 19 July 2011
- journal article
- Published by Springer Nature in BMC Bioinformatics
- Vol. 12 (1) , 290
- https://doi.org/10.1186/1471-2105-12-290
Abstract
Background: High throughput sequencing technology provides us unprecedented opportunities to study transcriptome dynamics. Compared to microarray-based gene expression profiling, RNA-Seq has many advantages, such as high resolution, low background, and ability to identify novel transcripts. Moreover, for genes with multiple isoforms, expression of each isoform may be estimated from RNA-Seq data. Despite these advantages, recent work revealed that base level read counts from RNA-Seq data may not be randomly distributed and can be affected by local nucleotide composition. It was not clear though how the base level read count bias may affect gene level expression estimates. Results: In this paper, by using five published RNA-Seq data sets from different biological sources and with different data preprocessing schemes, we showed that commonly used estimates of gene expression levels from RNA-Seq data, such as reads per kilobase of gene length per million reads (RPKM), are biased in terms of gene length, GC content and dinucleotide frequencies. We directly examined the biases at the gene-level, and proposed a simple generalized-additive-model based approach to correct different sources of biases simultaneously. Compared to previously proposed base level correction methods, our method reduces bias in gene-level expression estimates more effectively. Conclusions: Our method identifies and corrects different sources of biases in gene-level expression measures from RNA-Seq data, and provides more accurate estimates of gene expression levels from RNA-Seq. This method should prove useful in meta-analysis of gene expression levels using different platforms or experimental protocols.Keywords
This publication has 34 references indexed in Scilit:
- Length bias correction for RNA-seq data in gene set analysesBioinformatics, 2011
- SAMStat: monitoring biases in next generation sequencing dataBioinformatics, 2010
- Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiationNature Biotechnology, 2010
- Understanding mechanisms underlying human gene expression variation with RNA sequencingNature, 2010
- FRT-seq: amplification-free, strand-specific transcriptome sequencingNature Methods, 2010
- RNA-Seq gene expression estimation with read mapping uncertaintyBioinformatics, 2009
- RNA-Seq: a revolutionary tool for transcriptomicsNature Reviews Genetics, 2009
- Mapping and quantifying mammalian transcriptomes by RNA-SeqNature Methods, 2008
- Evaluation of DNA microarray results with quantitative gene expression platformsNature Biotechnology, 2006
- Initial sequencing and analysis of the human genomeNature, 2001