Models of solar differential rotation

Abstract
Models of a differentially rotating compressible convection zone are calculated, considering the inertial forces in the poloidal components of the equations of motion. Two driving mechanisms have been considered: latitude dependent heat transport and anisotropic viscosity. In the former case a meridional circulation is induced initially which in turn generates differential rotation, whereas in the latter case differential rotation is directly driven by the anisotropic viscosity, and the meridional circulation is a secondary effect. In the case of anisotropic viscosity the choice of boundary conditions has a big influence on the results: depending on whether or not the conditions of vanishing pressure perturbation are imposed at the bottom of the convection zone, one obtains differential rotation with a fast (≥ 10 ms−1) or a slow (∼ 1 ms−1) circulation. In the latter case the rotation law is mainly a function of radius and the rotation rate increases inwards if the viscosity is larger in radial direction than in the horizontal directions. The models with latitude dependent heat transport exhibit a strong dependence on the Prandtl number. For values of the Prandtl number less than 0.2 the pole-equator temperature difference and the surface velocity of the meridional circulation are compatible with observations. For sufficiently small values of the Prandtl number the convection zone becomes globally unstable like a layer of fluid for which the critical Rayleigh number is exceeded.