Abstract
In this paper we consider nonlinear ill-posed problems F(x) = y 0, where x and y 0 are elements of Hilbert spaces X and Y, respectively. We solve these problems by Tikhonov regularization in a Hilbert scale. This means that the regularizing norm is stronger than the norm in X. Smoothness conditions are given that guarantee convergence rates with respect to the data noise in the original norm in X. We also propose a variant of Tikhonov regularization that yields these rates without needing the knowledge of the smoothness conditions. In this variant F is allowed to be known only approximately and X can be approximated by a finite-dimensional subspace. Finally, we illustrate the required conditions for a simple parameter estimation problem for regularization in Sobolev spaces.