Abstract
Benthic oxygen consumption and primary production were measured using the bell jar technique in deltaic and fringing mangrove forests of tropical northeastern Australia. In a deltaic forest, rates of sediment respiration ranged from 197 to 1645 μmol O2 m−2 h−1 (mean=836), but did not vary significantly with season or intertidal zone. Gross primary production varied among intertidal zones and seasons, ranging from −281 to 1413 μmol O2 m−2 h−1 (mean=258). Upon tidal exposure, rates of gross primary production increased, but respiration rates did not change significantly. In a fringing mangrove forest, benthic respiration and gross primary production exhibited strong seasonality. In both forests, rates of oxygen consumption and production were low compared to salt marshes, but equivalent to rates in other mangrove forests. The production:respiration (P/R) ratio varied greatly over space and time (range:−0.61 to 1.76), but most values were «1 with a mean of 0.15, indicating net heterotrophy. On a bare creek bank and a sandflat, rates of gross primary production and P/R ratios were generally higher than in the adjacent mangroves. Low microalgal standing stocks, low light intensity under the canopy, and differences in gross primary production between mangroves and tidal flats, and with tidal status, indicate that benthic microalgae are light-limited and a minor contributor to primary productivity in these tropical mangrove forests.