Dynamics of the Galactic Bulge using Planetary Nebulae

Abstract
Evidence for a bar at the center of the Milky Way triggered a renewed enthusiasm for dynamical modelling of the Galactic bar-bulge. Our goal is to compare the kinematics of a sample of tracers, planetary nebulae, widely distributed over the bulge with the corresponding kinematics for a range of models of the inner Galaxy. Three of these models are N-body barred systems arising from the instabilities of a stellar disk (Sellwood, Fux and Kalnajs), and one is a Schwarzschild system constructed to represent the 3D distribution of the COBE/DIRBE near-IR light and then evolved as an N-body system for a few dynamical times (Zhao). For the comparison of our data with the models, we use a new technique developed by Saha (1998). The procedure finds the parameters of each model, i.e. the solar galactocentric distance R_o in model units, the orientation angle phi, the velocity scale (in km/s per model unit), and the solar tangential velocity which best fit the data.

This publication has 0 references indexed in Scilit: