Quantum Statistical Theory of Plasmas and Liquid Metals

Abstract
A Debye‐Hückel‐type theory is described for an assembly of completely ionized atoms, the nuclei being treated classically and the electrons by the Thomas‐Fermi method. The thermodynamic functions are derived by considering the Debye charging process, and the virial theorem is shown to hold. Numerical results are given for hydrogen and iron near normal solid densities, and are probably accurate only at high temperatures (kT>5 ev for hydrogen and kT>100 ev for iron). At these temperatures, the results do not differ greatly from those of the ordinary Thomas‐Fermi theory of the atom except for the additional contributions of the nuclei.