Dibaryon Spectroscopy

Abstract
The AdS/CFT correspondence relates dibaryons in superconformal gauge theories to holomorphic curves in Kaehler-Einstein surfaces. The degree of the holomorphic curves is proportional to the gauge theory conformal dimension of the dibaryons. Moreover, the number of holomorphic curves should match, in an appropriately defined sense, the number of dibaryons. Using AdS/CFT backgrounds built from the generalized conifolds of Gubser, Shatashvili, and Nekrasov (1999), we show that the gauge theory prediction for the dimension of dibaryonic operators does indeed match the degree of the corresponding holomorphic curves. For AdS/CFT backgrounds built from cones over del Pezzo surfaces, we are able to match the degree of the curves to the conformal dimension of dibaryons for the n'th del Pezzo surface, n=1,2,...,6. Also, for the del Pezzos and the A_k type generalized conifolds, for the dibaryons of smallest conformal dimension, we are able to match the number of holomorphic curves with the number of possible dibaryon operators from gauge theory.

This publication has 0 references indexed in Scilit: