Development of the cyclic AMP response to parathyroid hormone and prostaglandin E2 in the embryonic chick limb

Abstract
The developing chick limb was studied to determine the ability of parathyroid hormone (PTH) and prostaglandin E2 (PGE2) to increase intracellular cyclic AMP (cAMP) during various stages of development. All developmental stages examined (stages 20–21, 24–25, and 26–28) responded to PGE2 when the cells were assayed immediately following the removal of the limbs from the embryos. In contrast, only stage 26–28 limb cells responded to PTH when assayed in a similar manner. The response to PTH was temporally correlated with the appearance of cartilage matrix in vivo. Undifferentiated limb cells were also cultured and assayed at various times for hormone responsiveness. Stage 24–25 high-density cell cultures responded initially to PGE2 but not to PTH. However, by 36 h and in all subsequent itme intervals tested, the response to PTH was significantly greater than that to PGE2. The PTH receptor, in contrast to that of PGE2, was shown to be sensitive to trypsin treatment, but could be regenerated during subsequent cell culture. The majority of the hormoneresponsive cells were found in cartilaginous regions of the limb, and were shown to respond to both hormones in a dose-dependent manner. The PTH-induced cAMP response was affected by low cell density and mouse serum, both of which significantly inhibit the chondrogenic potential of cultured limb cells. These findings are consistent with a temporal correlation between the development of the PTH response and chondrogenesis in vivo.