A 21 kilobase-pair deletion/addition difference in the inverted repeat sequence of chloroplast DNA from Chlamydomonas eugametos and C. moewusii

Abstract
Our recent physical mapping of chloroplast DNA (cpDNA) from Chlamydomonas moewusii, a unicellular green alga which is interfertile with Chlamydomonas eugametos, has revealed a two-fold size difference between the inverted repeat sequences of these algae. With a size of 42 kbp, the inverted repeat of C. moewusii is the largest yet identified in any chloroplast genome. Here we have compared the arrangement of conserved sequences within the two algal inverted repeats by hybridizing cloned restriction fragments representing over 90% of these repeats to Southern blots of cpDNA digests from the two algae. We found that the size difference between the two algal inverted repeats is due to the presence of an extra DNA segment of 21 kilobase pairs (kbp) in C. moewusii. Except for this sequence, the C. moewusii inverted repeat is highly homologous to the entire C. eugametos repeat and the arrangement of conserved sequences in the two repeats is identical. Southern hybridizations with specific gene probes revealed that the conserved sequences include the rDNA region and the genes coding for the large subunit of ribulose 1,5 bisphosphate carboxylase-oxygenase (rbcL) and for the ‘32 kilodalton’ thylakoid membrane protein (psbA). With respect to the conserved sequences, the extra 21 kbp DNA segment of C. moewusii lies in the region of psbA, most probably slightly downstream from this gene.